Analysis of DNA fragmentation in bovine somatic nuclear transfer embryos using TUNEL.

نویسندگان

  • M Fahrudin
  • T Otoi
  • N W K Karja
  • M Mori
  • M Murakami
  • T Suzuki
چکیده

The production of cloned animals is an inefficient process because of early or late embryonic losses. This study focused on the DNA fragmentation that occurs during embryonic development. The occurrence of DNA fragmentation was examined in bovine embryos produced by in vitro fertilization (IVF) and somatic cell nuclear transfer (NT) using the terminal deoxynucleotidyl transferase (TdT) nick-end labelling (TUNEL). IVF and NT embryos at the two-cell to blastocyst stage were stained by TUNEL for the analysis of DNA-fragmented nuclei and with propidium iodide for determination of the total number of cells. DNA fragmentation was first detected in NT embryos at the four-cell stage, but in IVF embryos at the six- to eight-cell stage. The percentage of embryos with at least one DNA-fragmented nucleus increased with the advance of the developmental stage of embryos in both IVF and NT groups. The DNA-fragmented nucleus index in NT embryos that developed beyond the four-cell stage was significantly higher (P<0.01) than that of IVF embryos at the same stage. In the both IVF and NT groups, TUNEL-labelled cells were detected in almost all blastocysts and were mainly observed in presumptive inner cell mass (ICM) cells of embryos. The DNA-fragmented nucleus index was negatively correlated with the total number of cells in NT blastocysts, but this relationship was not observed in IVF blastocysts. These results suggest that the high occurrence of DNA fragmentation observed in NT embryos may be related to early embryonic loss after transfer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-12: Nuclear Reprogramming in Bovin Somatic Cell Nuclear Transfer

Somatic cell nuclear transfer (SCNT or cloning) returns a differentiated cell to a totipotent status; a process termed nuclear reprogramming. Reproductive cloning has potential applications in both agriculture and biomedicine, but is limited by low efficiency. To understand the deficiencies of nuclear reprogramming, our research has focused on both candidate genes and global gene expression pat...

متن کامل

Mitochondrial and DNA damage in bovine somatic cell nuclear transfer embryos

The generation of reactive oxygen species (ROS) and subsequent mitochondrial and DNA damage in bovine somatic cell nuclear transfer (SCNT) embryos were examined. Bovine enucleated oocytes were electrofused with donor cells and then activated by a combination of Ca-ionophore and 6-dimethylaminopurine culture. The H2O2 and ˙OH radical levels, mitochondrial morphology and membrane potential (ΔΨ), ...

متن کامل

P-115: Melatonin Increases Developmental Rate of In Vitro Mouse Somatic Cell Nuclear

Background: The beneficial effect of supplementing culture medium with melatonin has been reported during in vitro embryo development of species such as mouse, bovine and porcine. However, the effect of melatonin on the mouse somatic cell nuclear transfer remained unknown. Materials and Methods: In this study, we assessed the effects of various concentrations of melatonin (10-6 to 10-12 M) on t...

متن کامل

O-7: Improved In Vitro Development of Cloned Bovine Embryos Using S-Adenosylhomocysteine,A Non-Toxic Epigenetic

Background: Development of cloned bovine embryos. Materials and Methods: Oocytes collection,oocyte denudation, oocyte enucleation, nuclear transfer, electrofusion, reconstructed embryo activation, culture of reconstructed and IVF embryo,and treatment with SAH post fusion interval Treatment of reconstructed embryos with TSA for 12 hours after activation, preparation of somatic donor cells, donor...

متن کامل

P-86: Production of Cloned Mice by Somaticm Cell Nuclear Transfer

Background: For several years, mammalian cloning by splitting an early embryo or nuclear transfer into oocytes method has been successfully performed. Cloning is now also possible using adult somatic cells. Although it has now been 15 years since the first cloned mammals were generated from somatic cells using nuclear transfer (NT), the success rate for producing live offspring by cloning is lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Reproduction

دوره 124 6  شماره 

صفحات  -

تاریخ انتشار 2002